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7.6 Mutual inductance
Two circuits, or loops, C1 and C2 are fixed in position relative to one 
another (Fig. 7.19). By some means, such as a battery and a variable 
resistance, a controllable current I1 is caused to flow in circuit C1. Let
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B1(x, y, z) be the magnetic field that would exist if the current in C1
remained constant at the value I1, and let �21 denote the flux of B1
through the circuit C2. Thus

�21 =
∫

S2

B1 · da2, (7.36)

where S2 is a surface spanning the loop C2. With the shape and relative
position of the two circuits fixed, �21 will be proportional to I1:

�21

I1
= constant ≡ M21. (7.37)

Suppose now that I1 changes with time, but slowly enough so that
the field B1 at any point in the vicinity of C2 is related to the current I1 in
C1 (at the same instant of time) in the same way as it would be related for
a steady current. (To see why such a restriction is necessary, imagine that
C1 and C2 are 10 meters apart and we cause the current in C1 to double
in value in 10 nanoseconds!) The flux �21 will change in proportion as
I1 changes. There will be an electromotive force induced in circuit C2, of
magnitude

E21 = −d�21

dt
�⇒ E21 = −M21

dI1

dt
. (7.38)

In Gaussian units there is a factor of c in the denominator here. But we
can define a new constant M′

21 ≡ M21/c so that the relation between E21
and dI1/dt remains of the same form.

We call the constant M21 the coefficient of mutual inductance. Its
value is determined by the geometry of our arrangement of loops. The
units will of course depend on our choice of units for E , I, and t. In SI

Figure 7.19.
Current I1 in loop C1 causes a certain flux �21
through loop C2.

C1

I1

C2
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units, with E in volts and I in amperes, the unit for M21 is volt · amp−1 · s,
or ohm · s. This unit is called the henry;2

1 henry = 1
volt · second

amp
= 1 ohm · second. (7.39)

That is, the mutual inductance M21 is one henry if a current I1 changing
at the rate of 1 ampere/second induces an electromotive force of 1 volt in
circuit C2. In Gaussian units, with E in statvolts and I in esu/second, the
unit for M21 is statvolt · (esu/second)−1 · second. Since 1 statvolt equals
1 esu/cm, this unit can also be written as second2/cm.

Example (Concentric rings) Figure 7.20 shows two coplanar, concentric
B1

C1

C2

R1
R2

I1

Figure 7.20.
Current I1 in ring C1 causes field B1, which is
approximately uniform over the region of the
small ring C2.

rings: a small ring C2 and a much larger ring C1. Assuming R2 � R1, what
is the mutual inductance M21?

Solution At the center of C1, with I1 flowing, the field B1 is given by
Eq. (6.54) as

B1 = μ0I1
2R1

. (7.40)

Since we are assuming R2 � R1, we can neglect the variation of B1 over the
interior of the small ring. The flux through the small ring is then

�21 = (πR2
2)

μ0I1
2R1

= μ0π I1R2
2

2R1
. (7.41)

The mutual inductance M21 in Eq. (7.37) is therefore

M21 = �21
I1

= μ0πR2
2

2R1
, (7.42)

and the electromotive force induced in C2 is

E21 = −M21
dI1
dt

= −μ0πR2
2

2R1

dI1
dt

. (7.43)

Since μ0 = 4π · 10−7 kg m/C2, we can write M21 alternatively as

M21 = (2π2 · 10−7 kg m/C2)R2
2

R1
. (7.44)

The numerical value of this expression gives M21 in henrys. In Gaussian units,
you can show that the relation corresponding to Eq. (7.43) is

E21 = −1
c

2π2R2
2

cR1

dI1
dt

, (7.45)

2 The unit is named after Joseph Henry (1797–1878), the foremost American physicist of
his time. Electromagnetic induction was discovered independently by Henry,
practically at the same time as Faraday conducted his experiments. Henry was the first
to recognize the phenomenon of self-induction. He developed the electromagnet and
the prototype of the electric motor, invented the electric relay, and all but invented
telegraphy.
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with E21 in statvolts, the R’s in cm, and I1 in esu/second. M21 is the coefficient
of the dI1/dt term, namely 2π2R2

2/c2R1 (in second2/cm). Appendix C states,
and derives, the conversion factor from henry to second2/cm.

Incidentally, the minus sign we have been carrying along doesn’t tell us
much at this stage. If you want to be sure which way the electromotive force will
tend to drive current in C2, Lenz’s law is your most reliable guide.

If the circuit C1 consisted of N1 turns of wire instead of a single
ring, the field B1 at the center would be N1 times as strong, for a given
current I1. Also, if the small loop C2 consisted of N2 turns, all of the same
radius R2, the electromotive force in each turn would add to that in the
next, making the total electromotive force in that circuit N2 times that of
a single turn. Thus for multiple turns in each coil the mutual inductance
will be given by

M21 = μ0πN1N2R2
2

2R1
. (7.46)

This assumes that the turns in each coil are neatly bundled together,
the cross section of the bundle being small compared with the coil radius.
However, the mutual inductance M21 has a well-defined meaning for two
circuits of any shape or distribution. As we wrote in Eq. (7.38), M21 is the
(negative) ratio of the electromotive force in circuit 2, caused by chang-
ing current in circuit 1, to the rate of change of current I1. That is,

M21 = − E21

dI1/dt
. (7.47)

7.7 A reciprocity theorem
In considering the circuits C1 and C2 in the preceding example, we might
have inquired about the electromotive force induced in circuit C1 by a
changing current in circuit C2. That would involve another coefficient of
mutual inductance, M12, given by (ignoring the sign)

M12 = E12

dI2/dt
. (7.48)

M12 is related to M21 by the following remarkable theorem.

Theorem 7.2 For any two circuits,

M12 = M21 (7.49)

This theorem is not a matter of geometrical symmetry. Even the
simple example in Fig. 7.20 is not symmetrical with respect to the two
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circuits. Note that R1 and R2 enter in different ways into the expression
for M21; Eq. (7.49) asserts that, for these two dissimilar circuits, if

M21 = πμ0N1N2R2
2

2R1
, then M12 = πμ0N1N2R2

2
2R1

(7.50)

also – and not what we would get by switching 1’s and 2’s everywhere!

Proof In view of the definition of mutual inductance in Eq. (7.37), our
goal is to show that �12/I2 = �21/I1, where �12 is the flux through
some circuit C1 due to a current I2 in another circuit C2, and �21 is the
flux through C2 due to a current I1 in C1. We will use the vector potential.
Stokes’ theorem tells us that∫

C
A · ds =

∫
S
(curl A) · da. (7.51)

In particular, if A is the vector potential of a magnetic field B, in other
words, if B = curl A, then we have

∫
C

A · ds =
∫

S
B · da = �S (7.52)

That is, the line integral of the vector potential around a loop is equal to
the flux of B through the loop.

Now, the vector potential is related to its current source as follows,
according to Eq. (6.46):

A21 = μ0I1

4π

∫
C1

ds1

r21
, (7.53)

where A21 is the vector potential, at some point (x2, y2, z2), of the mag-
netic field caused by current I1 flowing in circuit C1; ds1 is an element of
the loop C1; and r21 is the magnitude of the distance from that element
to the point (x2, y2, z2).

C1

I r21

C2(x2, y2, z2)

ds 1

ds2

Figure 7.21.
Calculation of the flux �21 that passes through
C2 as a result of current I1 flowing in C1.

Figure 7.21 shows the two loops C1 and C2, with current I1 flowing
in C1. Let (x2, y2, z2) be a point on the loop C2. Then Eqs. (7.52) and
(7.53) give the flux through C2 due to current I1 in C1 as

�21 =
∫

C2

ds2 · A21 =
∫

C2

ds2 · μ0I1

4π

∫
C1

ds1

r21

= μ0I1

4π

∫
C2

∫
C1

ds2 · ds1

r21
. (7.54)

Similarly, the flux through C1 due to current I2 flowing in C2 is given by
the same expression with the labels 1 and 2 reversed:

�12 = μ0I2

4π

∫
C1

∫
C2

ds1 · ds2

r12
. (7.55)
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Now r12 = r21, for these are just distance magnitudes, not vectors.
The meaning of each of the integrals above is as follows: take the scalar
product of a pair of line elements, one on each loop, divide by the dis-
tance between them, and sum over all pairs. The only difference between
Eqs. (7.54) and (7.55) is the order in which this operation is carried out,
and that cannot affect the final sum. Hence �21/I1 = �12/I2, as desired.
Thanks to this theorem, we need make no distinction between M12 and
M21. We may speak, henceforth, of the mutual inductance M of any two
circuits.

Theorems of this sort are often called “reciprocity” theorems. There
are some other reciprocity theorems on electric circuits not unrelated to
this one. This may remind you of the relation Cjk = Ckj mentioned in
Section 3.6 and treated in Exercise 3.64. (In the spirit of that exercise,
see Problem 7.10 for a second proof of the above M12 = M21 theorem.)
A reciprocity relation usually expresses some general symmetry law that
is not apparent in the superficial structure of the system.

2b

2a

h

Complete winding
contains N turns

Figure 7.22.
Toroidal coil of rectangular cross section. Only a
few turns are shown.

7.8 Self-inductance
When the current I1 is changing, there is a change in the flux through
circuit C1 itself, and consequently an electromotive force is induced. Call
this E11. The induction law holds, whatever the source of the flux:

E11 = −d�11

dt
, (7.56)

where �11 is the flux through circuit 1 of the field B1 due to the current
I1 in circuit 1. The minus sign expresses the fact that the electromotive
force is always directed so as to oppose the change in current – Lenz’s
law, again. Since �11 will be proportional to I1 we can write

�11

I1
= constant ≡ L1. (7.57)

Equation (7.56) then becomes

E11 = −L1
dI1

dt
. (7.58)

The constant L1 is called the self-inductance of the circuit. We usually
drop the subscript “1.”

Example (Rectangular toroidal coil) As an example of a circuit for which
L can be calculated, consider the rectangular toroidal coil of Exercise 6.61, shown
here again in Fig. 7.22. You found (if you worked that exercise) that a current I
flowing in the coil of N turns produces a field, the strength of which, at a radial
distance r from the axis of the coil, is given by B = μ0NI/2πr. The total flux
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through one turn of the coil is the integral of this field over the cross section of
the coil:

�(one turn) = h
∫ b

a

μ0NI
2πr

dr = μ0NIh
2π

ln
(

b
a

)
. (7.59)

The flux threading the circuit of N turns is N times as great:

� = μ0N2Ih
2π

ln
(

b
a

)
. (7.60)

Hence the induced electromotive force E is

E = −d�

dt
= −μ0N2h

2π
ln

(
b
a

)
dI
dt

. (7.61)

Thus the self-inductance of this coil is given by

L = μ0N2h
2π

ln
(

b
a

)
. (7.62)

Since μ0 = 4π · 10−7 kg m/C2, we can rewrite this in a form similar to Eq. (7.44):

L = (2 · 10−7 kg m/C2)N2h ln
(

b
a

)
. (7.63)

The numerical value of this expression gives L in henrys. In Gaussian units, you
can show that the self-inductance is

L = 2N2h
c2 ln

(
b
a

)
. (7.64)

You may think that one of the rings we considered earlier would have
made a simpler example to illustrate the calculation of self-inductance.
However, if we try to calculate the inductance of a simple circular loop of
wire, we encounter a puzzling difficulty. It seems a good idea to simplify
the problem by assuming that the wire has zero diameter. But we soon
discover that, if finite current flows in a filament of zero diameter, the flux
threading a loop made of such a filament is infinite! The reason is that the
field B, in the neighborhood of a filamentary current, varies as 1/r, where
r is the distance from the filament, and the integral of B×(area) diverges
as

∫
(dr/r) when we extend it down to r = 0. To avoid this we may let

the radius of the wire be finite, not zero, which is more realistic anyway.
This may make the calculation a bit more complicated, in a given case,
but that won’t worry us. The real difficulty is that different parts of the
wire (at different distances from the center of the loop) now appear as
different circuits, linked by different amounts of flux. We are no longer
sure what we mean by the flux through the circuit. In fact, because the
electromotive force is different in the different filamentary loops into
which the circuit can be divided, some redistribution of current density
must occur when rapidly changing currents flow in the ring. Hence the
inductance of the circuit may depend somewhat on the rapidity of change
of I, and thus not be strictly a constant as Eq. (7.58) would imply.
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We avoided this embarrassment in the toroidal coil example by
ignoring the field in the immediate vicinity of the individual turns of the
winding. Most of the flux does not pass through the wires themselves,
and whenever that is the case the effect we have just been worrying about
will be unimportant.

R

B

L

A

C

I

+
–

(a)

(b)

Figure 7.23.
A simple circuit with inductance (a) and
resistance (b).

7.9 Circuit containing self-inductance
Suppose we connect a battery, providing electromotive force E0, to a coil,
or inductor, with self-inductance L, as in Fig. 7.23(a). The coil itself,
the connecting wires, and even the battery will have some resistance.
We don’t care how this is distributed around the circuit. It can all be
lumped together in one resistance R, indicated on the circuit diagram
of Fig. 7.23(b) by a resistor symbol with this value. Also, the rest of
the circuit, especially the connecting wires, contribute a bit to the self-
inductance of the whole circuit; we assume that this is included in L. In
other words, Fig. 7.23(b) represents an idealization of the physical cir-
cuit. The inductor L, symbolized by , has no resistance; the resis-
tor R has no inductance. It is this idealized circuit that we shall now
analyze.

If the current I in the circuit is changing at the rate dI/dt, an electro-
motive force L dI/dt will be induced, in a direction to oppose the change.
Also, there is the constant electromotive force E0 of the battery. If we
define the positive current direction as the one in which the battery tends
to drive current around the circuit, then the net electromotive force at any
instant is E0 − L dI/dt. This drives the current I through the resistor R.
That is,

E0 − L
dI
dt

= RI. (7.65)

We can also describe the situation in this way: the voltage difference
between points A and B in Fig. 7.23(b), which we call the voltage across
the inductor, is L dI/dt, with the upper end of the inductor positive if
I in the direction shown is increasing. The voltage difference between
B and C, the voltage across the resistor, is RI, with the upper end of
the resistor positive. Hence the sum of the voltage across the inductor
and the voltage across the resistor is L dI/dt + RI. This is the same as
the potential difference between the battery terminals, which is E0 (our
idealized battery has no internal resistance). Thus we have

E0 = L
dI
dt

+ RI, (7.66)

which is merely a restatement of Eq. (7.65).
Before we look at the mathematical solution of Eq. (7.65), let’s pre-

dict what ought to happen in this circuit if the switch is closed at t= 0.
Before the switch is closed, I = 0, necessarily. A long time after the
switch has been closed, some steady state will have been attained, with
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current practically constant at some value I0. Then and thereafter,
dI/dt ≈ 0, and Eq. (7.65) reduces to

E0 = RI0. (7.67)

The transition from zero current to the steady-state current I0 cannot
occur abruptly at t = 0, for then dI/dt would be infinite. In fact, just
after t = 0, the current I will be so small that the RI term in Eq. (7.65)
can be ignored, giving

dI
dt

= E0

L
. (7.68)

The inductance L limits the rate of rise of the current.

0

0

=

2 43

(a)

(b)

dI
dt

L
R

L
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L
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t

t

I0 =
I

I

I = I0 [1 – e–(R/L)t]

I0

0

0

Figure 7.24.
(a) How the current must behave initially, and
after a very long time has elapsed. (b) The
complete variation of current with time in the
circuit of Fig. 7.23.

What we now know is summarized in Fig. 7.24(a). It only remains to
find how the whole change takes place. Equation (7.65) is a differential
equation very much like Eq. (4.39) in Chapter 4. The constant E0 term
complicates things slightly, but the equation is still straightforward to
solve. In Problem 7.14 you can show that the solution to Eq. (7.65) that
satisfies our initial condition, I = 0 at t = 0, is

I(t) = E0

R

(
1 − e−(R/L)t

)
. (7.69)

The graph in Fig. 7.24(b) shows the current approaching its asymp-
totic value I0 exponentially. The “time constant” of this circuit is the
quantity L/R. If L is measured in henrys and R in ohms, this comes out in
seconds, since henrys= volt · amp−1 · second, and ohms= volt · amp−1.

I = I0

I = I0e–(R/L)(t – t1)

L

R
I

(a)

(b)

t1 t

Figure 7.25.
(a) LR circuit. (b) Exponential decay of current in
the LR circuit.

What happens if we open the switch after the current I0 has been
established, thus forcing the current to drop abruptly to zero? That would
make the term L dI/dt negatively infinite! The catastrophe can be more
than mathematical. People have been killed opening switches in highly
inductive circuits. What happens generally is that a very high induced
voltage causes a spark or arc across the open switch contacts, so that the
current continues after all. Let us instead remove the battery from the
circuit by closing a conducting path across the LR combination, as in
Fig. 7.25(a), at the same time disconnecting the battery. We now have a
circuit described by the equation

0 = L
dI
dt

+ RI, (7.70)

with the initial condition I = I0 at t = t1, where t1 is the instant at which
the short circuit was closed. The solution is the simple exponential decay
function

I(t) = I0e−(R/L)(t−t1) (7.71)

with the same characteristic time L/R as before.
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7.10 Energy stored in the magnetic field
During the decay of the current described by Eq. (7.71) and Fig. 7.25(b),
energy is dissipated in the resistor R. Since the energy dU dissipated in
any short interval dt is RI2 dt, the total energy dissipated after the closing
of the switch at time t1 is given by

U =
∫ ∞

t1
RI2 dt =

∫ ∞

t1
RI2

0e−(2R/L)(t−t1) dt

= −RI2
0

(
L

2R

)
e−(2R/L)(t−t1)

∣∣∣∣∞
t1

= 1
2

LI2
0 . (7.72)

The source of this energy was the inductor with its magnetic field.
Indeed, exactly that amount of work had been done by the battery to build
up the current in the first place – over and above the energy dissipated
in the resistor between t = 0 and t = t1, which was also provided by
the battery. To see that this is a general relation, note that, if we have an
increasing current in an inductor, work must be done to drive the current
I against the induced electromotive force L dI/dt. Since the electromotive
force is defined to be the work done per unit charge, and since a charge
I dt moves through the inductor in time dt, the work done in time dt is

dW = L
dI
dt

(I dt) = LI dI = 1
2

L d(I2). (7.73)

Therefore, we may assign a total energy

U = 1
2

LI2 (7.74)

to an inductor carrying current I. With the eventual decay of this current,
that amount of energy will appear somewhere else.

It is natural to regard this as energy stored in the magnetic field of the
inductor, just as we have described the energy of a charged capacitor as
stored in its electric field. The energy of a capacitor charged to potential
difference V is (1/2)CV2 and is accounted for by assigning to an element
of volume dv, where the electric field strength is E, an amount of energy
(ε0/2)E2 dv. It is pleasant, but hardly surprising, to find that a similar
relation holds for the energy stored in an inductor. That is, we can ascribe
to the magnetic field an energy density (1/2μ0)B2, and summing the
energy of the whole field will give the energy (1/2)LI2.

Example (Rectangular toroidal coil) To show how the energy density
B2/2μ0 works out in one case, we can go back to the toroidal coil whose induc-
tance L we calculated in Section 7.8. We found in Eq. (7.62) that

L = μ0N2h
2π

ln
(

b
a

)
. (7.75)
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The magnetic field strength B, with current I flowing, was given by

B = μ0NI
2πr

. (7.76)

To calculate the volume integral of B2/2μ0 we can use a volume element con-
sisting of the cylindrical shell sketched in Fig. 7.26, with volume 2πrh dr. As this
shell expands from r = a to r = b, it sweeps through all the space that contains
magnetic field. (The field B is zero everywhere outside the torus, remember.) So,

1
2μ0

∫
B2 dv = 1

2μ0

∫ b

a

(
μ0NI
2πr

)2
2πrh dr = μ0N2hI2

4π
ln

(
b
a

)
. (7.77)

Comparing this result with Eq. (7.75), we see that, indeed,

1
2μ0

∫
B2 dv = 1

2
LI2. (7.78)

The task of Problem 7.18 is to show that this result holds for an arbitrary circuit
with inductance L.

h

B

2b

2a
dr

r

Figure 7.26.
Calculation of energy stored in the magnetic
field of the toroidal coil of Fig. 7.22.

The more general statement, the counterpart of our statement for the
electric field in Eq. (1.53), is that the energy U to be associated with any
magnetic field B(x, y, z) is given by

U = 1
2μ0

∫
entire
field

B2 dv (7.79)

With B in tesla and v in m3, the energy U will be given in joules, as
you can check. In Eq. (7.74), with L in henrys and I in amperes, U will
also be given in joules. The Gaussian equivalent of Eq. (7.79) for U in
ergs, B in gauss, and v in cm3 is

U = 1
8π

∫
entire
field

B2 dv. (7.80)

The Gaussian equivalent of Eq. (7.74) remains U = LI2/2, because the 
reasoning leading up to that equation is unchanged.
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7.2.3 Inductance

Suppose you have two loops of wire, at rest (Fig. 7.30). If you run a steady current
I1 around loop 1, it produces a magnetic field B1. Some of the field lines pass

16This paradox was suggested by Tom Colbert. Refer to Problem 2.55.
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Loop 2

Loop 1

B1

B1

I1

B1

FIGURE 7.30

Loop 2

Loop 1

r

d l2

d l1

FIGURE 7.31

through loop 2; let �2 be the flux of B1 through 2. You might have a tough time
actually calculating B1, but a glance at the Biot-Savart law,

B1 = μ0

4π
I1

∮
dl1 × r̂
r2 ,

reveals one significant fact about this field: It is proportional to the current I1.
Therefore, so too is the flux through loop 2:

�2 =
∫

B1 · da2.

Thus

�2 = M21 I1, (7.22)

where M21 is the constant of proportionality; it is known as the mutual induc-
tance of the two loops.

There is a cute formula for the mutual inductance, which you can derive by
expressing the flux in terms of the vector potential, and invoking Stokes’ theorem:

�2 =
∫

B1 · da2 =
∫

(∇ × A1) · da2 =
∮

A1 · dl2.

Now, according to Eq. 5.66,

A1 = μ0 I1

4π

∮
dl1
r ,

and hence

�2 = μ0 I1

4π

∮ (∮
dl1
r

)
· dl2.

Evidently

M21 = μ0

4π

∮ ∮
dl1 · dl2
r . (7.23)
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This is the Neumann formula; it involves a double line integral—one integration
around loop 1, the other around loop 2 (Fig. 7.31). It’s not very useful for practical
calculations, but it does reveal two important things about mutual inductance:

1. M21 is a purely geometrical quantity, having to do with the sizes, shapes,
and relative positions of the two loops.

2. The integral in Eq. 7.23 is unchanged if we switch the roles of loops 1 and
2; it follows that

M21 = M12. (7.24)

This is an astonishing conclusion: Whatever the shapes and positions of the
loops, the flux through 2 when we run a current I around 1 is identical to
the flux through 1 when we send the same current I around 2. We may as
well drop the subscripts and call them both M .

Example 7.10. A short solenoid (length l and radius a, with n1 turns per unit
length) lies on the axis of a very long solenoid (radius b, n2 turns per unit length)
as shown in Fig. 7.32. Current I flows in the short solenoid. What is the flux
through the long solenoid?

l
b

a

FIGURE 7.32

Solution
Since the inner solenoid is short, it has a very complicated field; moreover, it puts
a different flux through each turn of the outer solenoid. It would be a miserable
task to compute the total flux this way. However, if we exploit the equality of the
mutual inductances, the problem becomes very easy. Just look at the reverse situ-
ation: run the current I through the outer solenoid, and calculate the flux through
the inner one. The field inside the long solenoid is constant:

B = μ0n2 I

(Eq. 5.59), so the flux through a single loop of the short solenoid is

Bπa2 = μ0n2 Iπa2.

There are n1l turns in all, so the total flux through the inner solenoid is

� = μ0πa2n1n2l I.
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This is also the flux a current I in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

M = μ0πa2n1n2l.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

E2 = −d�2

dt
= −M

d I1

dt
. (7.25)

(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!

Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

� = L I. (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M , it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

E = −L
d I

dt
. (7.27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.

B

B

I

FIGURE 7.33
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Example 7.11. Find the self-inductance of a toroidal coil with rectangular cross
section (inner radius a, outer radius b, height h), that carries a total of N turns.

Solution
The magnetic field inside the toroid is (Eq. 5.60)

B = μ0 N I

2πs
.

a
s
b

h

ds
Axis

FIGURE 7.34

The flux through a single turn (Fig. 7.34) is
∫

B · da = μ0 N I

2π
h

∫ b

a

1

s
ds = μ0 N I h

2π
ln

(
b

a

)
.

The total flux is N times this, so the self-inductance (Eq. 7.26) is

L = μ0 N 2h

2π
ln

(
b

a

)
. (7.28)

Inductance (like capacitance) is an intrinsically positive quantity. Lenz’s law,
which is enforced by the minus sign in Eq. 7.27, dictates that the emf is in such
a direction as to oppose any change in current. For this reason, it is called a
back emf. Whenever you try to alter the current in a wire, you must fight against
this back emf. Inductance plays somewhat the same role in electric circuits that
mass plays in mechanical systems: The greater L is, the harder it is to change
the current, just as the larger the mass, the harder it is to change an object’s
velocity.

Example 7.12. Suppose a current I is flowing around a loop, when someone
suddenly cuts the wire. The current drops “instantaneously” to zero. This gen-
erates a whopping back emf, for although I may be small, d I/dt is enormous.
(That’s why you sometimes draw a spark when you unplug an iron or toaster—
electromagnetic induction is desperately trying to keep the current going, even if
it has to jump the gap in the circuit.)

Nothing so dramatic occurs when you plug in a toaster or iron. In this case in-
duction opposes the sudden increase in current, prescribing instead a smooth and



326 Chapter 7 Electrodynamics

continuous buildup. Suppose, for instance, that a battery (which supplies a con-
stant emf E0) is connected to a circuit of resistance R and inductance L (Fig. 7.35).
What current flows?

R

L

ε0

FIGURE 7.35

Solution
The total emf in this circuit is E0 from the battery plus −L(d I/dt) from the in-
ductance. Ohm’s law, then, says17

E0 − L
d I

dt
= I R.

This is a first-order differential equation for I as a function of time. The general
solution, as you can show for yourself, is

I (t) = E0

R
+ ke−(R/L)t ,

where k is a constant to be determined by the initial conditions. In particular, if
you close the switch at time t = 0, so I (0) = 0, then k = −E0/R, and

I (t) = E0

R

[
1 − e−(R/L)t

]
. (7.29)

This function is plotted in Fig. 7.36. Had there been no inductance in the circuit,
the current would have jumped immediately to E0/R. In practice, every circuit
has some self-inductance, and the current approaches E0/R asymptotically. The
quantity τ ≡ L/R is the time constant; it tells you how long the current takes to
reach a substantial fraction (roughly two-thirds) of its final value.

L /R 2L /R 3L /R

I

t

E0/R

FIGURE 7.36

17Notice that −L(d I/dt) goes on the left side of the equation—it is part of the emf that establishes
the voltage across the resistor.
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Problem 7.22 A small loop of wire (radius a) is held a distance z above the center
of a large loop (radius b), as shown in Fig. 7.37. The planes of the two loops are
parallel, and perpendicular to the common axis.

(a) Suppose current I flows in the big loop. Find the flux through the little loop.
(The little loop is so small that you may consider the field of the big loop to be
essentially constant.)

(b) Suppose current I flows in the little loop. Find the flux through the big loop.
(The little loop is so small that you may treat it as a magnetic dipole.)

(c) Find the mutual inductances, and confirm that M12 = M21.

Problem 7.23 A square loop of wire, of side a, lies midway between two long wires,
3a apart, and in the same plane. (Actually, the long wires are sides of a large rectan-
gular loop, but the short ends are so far away that they can be neglected.) A clock-
wise current I in the square loop is gradually increasing: d I/dt = k (a constant).
Find the emf induced in the big loop. Which way will the induced current flow?

Problem 7.24 Find the self-inductance per unit length of a long solenoid, of radius
R, carrying n turns per unit length.

a

z

b

FIGURE 7.37

d

l

FIGURE 7.38

Problem 7.25 Try to compute the self-inductance of the “hairpin” loop shown in
Fig. 7.38. (Neglect the contribution from the ends; most of the flux comes from
the long straight section.) You’ll run into a snag that is characteristic of many self-
inductance calculations. To get a definite answer, assume the wire has a tiny radius ε,
and ignore any flux through the wire itself.

Problem 7.26 An alternating current I (t) = I0 cos(ωt) (amplitude 0.5 A, frequency
60 Hz) flows down a straight wire, which runs along the axis of a toroidal coil with
rectangular cross section (inner radius 1 cm, outer radius 2 cm, height 1 cm, 1000
turns). The coil is connected to a 500 � resistor.

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the
current, IR(t), in the resistor.

(b) Calculate the back emf in the coil, due to the current IR(t). What is the ratio of
the amplitudes of this back emf and the “direct” emf in (a)?

Problem 7.27 A capacitor C is charged up to a voltage V and connected to an
inductor L , as shown schematically in Fig. 7.39. At time t = 0, the switch S is
closed. Find the current in the circuit as a function of time. How does your answer
change if a resistor R is included in series with C and L?
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CL

S

FIGURE 7.39

7.2.4 Energy in Magnetic Fields

It takes a certain amount of energy to start a current flowing in a circuit. I’m not
talking about the energy delivered to the resistors and converted into heat—that
is irretrievably lost, as far as the circuit is concerned, and can be large or small,
depending on how long you let the current run. What I am concerned with, rather,
is the work you must do against the back emf to get the current going. This is
a fixed amount, and it is recoverable: you get it back when the current is turned
off. In the meantime, it represents energy latent in the circuit; as we’ll see in a
moment, it can be regarded as energy stored in the magnetic field.

The work done on a unit charge, against the back emf, in one trip around the
circuit is −E (the minus sign records the fact that this is the work done by you
against the emf, not the work done by the emf). The amount of charge per unit
time passing down the wire is I . So the total work done per unit time is

dW

dt
= −E I = L I

d I

dt
.

If we start with zero current and build it up to a final value I , the work done
(integrating the last equation over time) is

W = 1

2
L I 2. (7.30)

It does not depend on how long we take to crank up the current, only on the
geometry of the loop (in the form of L) and the final current I .

There is a nicer way to write W , which has the advantage that it is readily
generalized to surface and volume currents. Remember that the flux � through
the loop is equal to L I (Eq. 7.26). On the other hand,

� =
∫

B · da =
∫

(∇ × A) · da =
∮

A · dl,

where the line integral is around the perimeter of the loop. Thus

L I =
∮

A · dl,
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and therefore

W = 1

2
I
∮

A · dl = 1

2

∮
(A · I) dl. (7.31)

In this form, the generalization to volume currents is obvious:

W = 1

2

∫
V
(A · J) dτ. (7.32)

But we can do even better, and express W entirely in terms of the magnetic
field: Ampère’s law, ∇ × B = μ0J, lets us eliminate J:

W = 1

2μ0

∫
A · (∇ × B) dτ. (7.33)

Integration by parts transfers the derivative from B to A; specifically, product rule
6 states that

∇ · (A × B) = B · (∇ × A) − A · (∇ × B),

so

A · (∇ × B) = B · B − ∇ · (A × B).

Consequently,

W = 1

2μ0

[∫
B2 dτ −

∫
∇ · (A × B) dτ

]

= 1

2μ0

[∫
V

B2 dτ −
∮

S
(A × B) · da

]
, (7.34)

where S is the surface bounding the volume V .
Now, the integration in Eq. 7.32 is to be taken over the entire volume occupied

by the current. But any region larger than this will do just as well, for J is zero
out there anyway. In Eq. 7.34, the larger the region we pick the greater is the
contribution from the volume integral, and therefore the smaller is that of the
surface integral (this makes sense: as the surface gets farther from the current,
both A and B decrease). In particular, if we agree to integrate over all space, then
the surface integral goes to zero, and we are left with

W = 1

2μ0

∫
all space

B2 dτ . (7.35)

In view of this result, we say the energy is “stored in the magnetic field,” in
the amount (B2/2μ0) per unit volume. This is a nice way to think of it, though
someone looking at Eq. 7.32 might prefer to say that the energy is stored in the
current distribution, in the amount 1

2 (A · J) per unit volume. The distinction is
one of bookkeeping; the important quantity is the total energy W , and we need
not worry about where (if anywhere) the energy is “located.”
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You might find it strange that it takes energy to set up a magnetic field—after
all, magnetic fields themselves do no work. The point is that producing a magnetic
field, where previously there was none, requires changing the field, and a chang-
ing B-field, according to Faraday, induces an electric field. The latter, of course,
can do work. In the beginning, there is no E, and at the end there is no E; but in
between, while B is building up, there is an E, and it is against this that the work
is done. (You see why I could not calculate the energy stored in a magnetostatic
field back in Chapter 5.) In the light of this, it is extraordinary how similar the
magnetic energy formulas are to their electrostatic counterparts:18

Welec = 1

2

∫
(Vρ) dτ = ε0

2

∫
E2 dτ, (2.43 and 2.45)

Wmag = 1

2

∫
(A · J) dτ = 1

2μ0

∫
B2 dτ. (7.32 and 7.35)

Example 7.13. A long coaxial cable carries current I (the current flows down the
surface of the inner cylinder, radius a, and back along the outer cylinder, radius
b) as shown in Fig. 7.40. Find the magnetic energy stored in a section of length l.

I

a
b

I

FIGURE 7.40

Solution
According to Ampère’s law, the field between the cylinders is

B = μ0 I

2πs
φ̂.

Elsewhere, the field is zero. Thus, the energy per unit volume is

1

2μ0

(
μ0 I

2πs

)2

= μ0 I 2

8π2s2
.

The energy in a cylindrical shell of length l, radius s, and thickness ds, then, is
(

μ0 I 2

8π2s2

)
2πls ds = μ0 I 2l

4π

(
ds

s

)
.

18For an illuminating confirmation of Eq. 7.35, using the method of Prob. 2.44, see T. H. Boyer,
Am. J. Phys. 69, 1 (2001).
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Integrating from a to b, we have:

W = μ0 I 2l

4π
ln

(
b

a

)
.

By the way, this suggests a very simple way to calculate the self-inductance of
the cable. According to Eq. 7.30, the energy can also be written as 1

2 L I 2. Com-
paring the two expressions,19

L = μ0l

2π
ln

(
b

a

)
.

This method of calculating self-inductance is especially useful when the current
is not confined to a single path, but spreads over some surface or volume, so that
different parts of the current enclose different amounts of flux. In such cases, it
can be very tricky to get the inductance directly from Eq. 7.26, and it is best to let
Eq. 7.30 define L .

Problem 7.28 Find the energy stored in a section of length l of a long solenoid
(radius R, current I , n turns per unit length), (a) using Eq. 7.30 (you found L in
Prob. 7.24); (b) using Eq. 7.31 (we worked out A in Ex. 5.12); (c) using Eq. 7.35;
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius a < R out
to radius b > R).

Problem 7.29 Calculate the energy stored in the toroidal coil of Ex. 7.11, by apply-
ing Eq. 7.35. Use the answer to check Eq. 7.28.

Problem 7.30 A long cable carries current in one direction uniformly distributed
over its (circular) cross section. The current returns along the surface (there is a
very thin insulating sheath separating the currents). Find the self-inductance per
unit length.

Problem 7.31 Suppose the circuit in Fig. 7.41 has been connected for a long time
when suddenly, at time t = 0, switch S is thrown from A to B, bypassing the battery.

R

L

S

ε0

A
B

FIGURE 7.41

19Notice the similarity to Eq. 7.28—in a sense, the rectangular toroid is a short coaxial cable, turned
on its side.
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(a) What is the current at any subsequent time t?

(b) What is the total energy delivered to the resistor?

(c) Show that this is equal to the energy originally stored in the inductor.

Problem 7.32 Two tiny wire loops, with areas a1 and a2, are situated a displacement
r apart (Fig. 7.42).

a2

a1

r

FIGURE 7.42

(a) Find their mutual inductance. [Hint: Treat them as magnetic dipoles, and use
Eq. 5.88.] Is your formula consistent with Eq. 7.24?

(b) Suppose a current I1 is flowing in loop 1, and we propose to turn on a current
I2 in loop 2. How much work must be done, against the mutually induced emf,
to keep the current I1 flowing in loop 1? In light of this result, comment on
Eq. 6.35.

Problem 7.33 An infinite cylinder of radius R carries a uniform surface charge σ .
We propose to set it spinning about its axis, at a final angular velocity ω f . How much
work will this take, per unit length? Do it two ways, and compare your answers:

(a) Find the magnetic field and the induced electric field (in the quasistatic approx-
imation), inside and outside the cylinder, in terms of ω, ω̇, and s (the distance
from the axis). Calculate the torque you must exert, and from that obtain the
work done per unit length (W = ∫

N dφ).

(b) Use Eq. 7.35 to determine the energy stored in the resulting magnetic field.


	Pages from Electricity_and_Magnetism_-_Purcell-3rd Edition-2.pdf
	Pages from David J. Griffiths-Introduction to Electrodynamics-Addison-Wesley (2012).pdf



