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7.6 Mutual inductance

Two circuits, or loops, C| and C; are fixed in position relative to one
another (Fig. 7.19). By some means, such as a battery and a variable
resistance, a controllable current /; is caused to flow in circuit C;. Let
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Figure 7.19.
Current 17 in loop C; causes a certain flux ®;;
through loop C,.

Bi(x,y,z) be the magnetic field that would exist if the current in C;
remained constant at the value /;, and let ®5; denote the flux of B
through the circuit C,. Thus

Dy =f B, - day, (7.36)
S2

where S is a surface spanning the loop C>. With the shape and relative
position of the two circuits fixed, ®,; will be proportional to /;:

Dy
T = constant = Mp;. (7.37)
1

Suppose now that /1 changes with time, but slowly enough so that
the field By at any point in the vicinity of C; is related to the current /1 in
C (at the same instant of time) in the same way as it would be related for
a steady current. (To see why such a restriction is necessary, imagine that
C and C, are 10 meters apart and we cause the current in C; to double
in value in 10 nanoseconds!) The flux ®,; will change in proportion as
I changes. There will be an electromotive force induced in circuit C,, of
magnitude

d
S1=——— = &E1=—My—. (7.38)

In Gaussian units there is a factor of ¢ in the denominator here. But we
can define a new constant Mél = M> /c so that the relation between &£
and dI /dt remains of the same form.

We call the constant M»; the coefficient of mutual inductance. Its
value is determined by the geometry of our arrangement of loops. The
units will of course depend on our choice of units for &, I, and ¢. In SI
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units, with £ in volts and 7 in amperes, the unit for M»; is volt- amp_1 .S,

or ohm - s. This unit is called the henry;”

volt - second

1 henry =1 = 1 ohm - second. (7.39)

amp
That is, the mutual inductance M>; is one henry if a current /; changing
at the rate of 1 ampere/second induces an electromotive force of 1 volt in
circuit C». In Gaussian units, with £ in statvolts and I in esu/second, the
unit for My is statvolt - (esu/second) ! - second. Since 1 statvolt equals
1 esu/cm, this unit can also be written as second? /cm.

Example (Concentric rings) Figure 7.20 shows two coplanar, concentric
rings: a small ring C» and a much larger ring C;. Assuming Ry < Rj, what
is the mutual inductance M5 ?

Solution At the center of Cy, with I} flowing, the field By is given by

Eq. (6.54) as
I
——— (7.40)
2R,

Since we are assuming Ry < Ry, we can neglect the variation of By over the
interior of the small ring. The flux through the small ring is then

2
5 ol MO”IIRz
Oy = (TRY) — = ——=. 7.41
21 = (TR3) IR, 3R, (7.41)
The mutual inductance My; in Eq. (7.37) is therefore
o) 7R3
My = 22 _ HOTT (7.42)
I 2Ry
and the electromotive force induced in C; is
2
dl HoTT RS dI}
& =—-My— =— —. 7.43
2 2 2R, di (7.43)
Since pug = 4m - 1077 kg m/Cz, we can write M»| alternatively as
27210~ kgm/C?)R3
My = gm/CIRs (7.44)

Ry

The numerical value of this expression gives M3 in henrys. In Gaussian units,

you can show that the relation corresponding to Eq. (7.43) is
1 272R3 dl

&y =—- ,
2 ¢ cRy dt

(7.45)

2 The unit is named after J oseph Henry (1797-1878), the foremost American physicist of
his time. Electromagnetic induction was discovered independently by Henry,
practically at the same time as Faraday conducted his experiments. Henry was the first
to recognize the phenomenon of self-induction. He developed the electromagnet and
the prototype of the electric motor, invented the electric relay, and all but invented
telegraphy.

Ry

///cl

Figure 7.20.

Current I in ring C| causes field B, which is
approximately uniform over the region of the
small ring C».
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with & in statvolts, the R’s in cm, and /] in esu/second. M»; is the coefficient
of the dI| /dt term, namely 2712R% /c2R1 (in second? /cm). Appendix C states,
and derives, the conversion factor from henry to second? /em.

Incidentally, the minus sign we have been carrying along doesn’t tell us
much at this stage. If you want to be sure which way the electromotive force will
tend to drive current in Cp, Lenz’s law is your most reliable guide.

If the circuit Cy consisted of N; turns of wire instead of a single
ring, the field B; at the center would be N; times as strong, for a given
current /1. Also, if the small loop C> consisted of N; turns, all of the same
radius R», the electromotive force in each turn would add to that in the
next, making the total electromotive force in that circuit N, times that of
a single turn. Thus for multiple turns in each coil the mutual inductance
will be given by

_ HoTNIN>R3

7.46
R, (7.46)

M»;

This assumes that the turns in each coil are neatly bundled together,

the cross section of the bundle being small compared with the coil radius.

However, the mutual inductance M»; has a well-defined meaning for two

circuits of any shape or distribution. As we wrote in Eq. (7.38), M»; is the

(negative) ratio of the electromotive force in circuit 2, caused by chang-
ing current in circuit 1, to the rate of change of current /1. That is,

&

~aa (7.47)

My =

7.7 A reciprocity theorem

In considering the circuits C| and C; in the preceding example, we might
have inquired about the electromotive force induced in circuit C; by a
changing current in circuit C>. That would involve another coefficient of
mutual inductance, M1>, given by (ignoring the sign)

&n
My = . 7.48
2= Jdr (7.48)
My is related to Mp; by the following remarkable theorem.
Theorem 7.2 For any two circuits,
My = My (7.49)

This theorem is not a matter of geometrical symmetry. Even the
simple example in Fig. 7.20 is not symmetrical with respect to the two
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circuits. Note that Ry and R; enter in different ways into the expression
for M»1; Eq. (7.49) asserts that, for these two dissimilar circuits, if
JT/,LoNlNzR% JT/,LoNlNsz

My = 12272 Mp="""22 7.50
21 R, en 12 R, (7.50)

also — and not what we would get by switching 1’s and 2’s everywhere!

Proof 1In view of the definition of mutual inductance in Eq. (7.37), our
goal is to show that @15/, = Py1/I1, where ®1; is the flux through
some circuit C| due to a current /> in another circuit Cp, and ®»; is the
flux through C> due to a current 71 in C1. We will use the vector potential.
Stokes’ theorem tells us that

/ A-ds= / (curl A) - da. (7.51)
C S

In particular, if A is the vector potential of a magnetic field B, in other
words, if B = curl A, then we have

/A-ds:/B-da:CDS (7.52)
c S

That is, the line integral of the vector potential around a loop is equal to
the flux of B through the loop.

Now, the vector potential is related to its current source as follows,
according to Eq. (6.46):

Ay = ol [ dst (1.53)
47‘[ c, 1
where A»; is the vector potential, at some point (x2, y2, z2), of the mag-
netic field caused by current /1 flowing in circuit Cy; ds; is an element of
the loop Cy; and ry; is the magnitude of the distance from that element
to the point (x2, y2,22).
Figure 7.21 shows the two loops C; and C,, with current /1 flowing
in Cy. Let (x2,y2,722) be a point on the loop C>. Then Eqgs. (7.52) and
(7.53) give the flux through C; due to current /1 in Cy as

011 ds
¢21=/d52-A21=fd2 —
G G s c

wol ds) - ds
_ Kol f f =2 (7.54)
Cr JCy 1

Similarly, the flux through C; due to current I flowing in C; is given by
the same expression with the labels 1 and 2 reversed:

I ds; - d
@ = —”“0 2 f / S (7.55)
C JCy 2

(X2, ¥2, Z0)

%,

Figure 7.21.
Calculation of the flux ®,; that passes through
C, as aresult of current I flowing in Cj.
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2b

Complete winding
contains N turns

Figure 7.22.
Toroidal coil of rectangular cross section.
few turns are shown.

Only a

Now rip = 1y, for these are just distance magnitudes, not vectors.
The meaning of each of the integrals above is as follows: take the scalar
product of a pair of line elements, one on each loop, divide by the dis-
tance between them, and sum over all pairs. The only difference between
Eqgs. (7.54) and (7.55) is the order in which this operation is carried out,
and that cannot affect the final sum. Hence @51/} = ®12/1>, as desired.
Thanks to this theorem, we need make no distinction between M, and
M>1. We may speak, henceforth, of the mutual inductance M of any two
circuits. O

Theorems of this sort are often called “reciprocity” theorems. There
are some other reciprocity theorems on electric circuits not unrelated to
this one. This may remind you of the relation Cj; = Cj; mentioned in
Section 3.6 and treated in Exercise 3.64. (In the spirit of that exercise,
see Problem 7.10 for a second proof of the above M1, = M>; theorem.)
A reciprocity relation usually expresses some general symmetry law that
is not apparent in the superficial structure of the system.

7.8 Self-inductance

When the current /7 is changing, there is a change in the flux through
circuit Cy itself, and consequently an electromotive force is induced. Call
this £11. The induction law holds, whatever the source of the flux:

En=—, 7.56
7 (7.56)
where @1 is the flux through circuit 1 of the field By due to the current
Iy in circuit 1. The minus sign expresses the fact that the electromotive
force is always directed so as to oppose the change in current — Lenz’s
law, again. Since ®; will be proportional to /; we can write
D

I_“ = constant = L. (7.57)
1

Equation (7.56) then becomes

dl
En=—-Li—. 7.58
1 " (7.58)
The constant L is called the self-inductance of the circuit. We usually
drop the subscript “1.”

Example (Rectangular toroidal coil) As an example of a circuit for which
L can be calculated, consider the rectangular toroidal coil of Exercise 6.61, shown
here again in Fig. 7.22. You found (if you worked that exercise) that a current /
flowing in the coil of N turns produces a field, the strength of which, at a radial
distance r from the axis of the coil, is given by B = NI /27 r. The total flux
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through one turn of the coil is the integral of this field over the cross section of

the coil:
b NI Nih (b
® (one turn) = h f PO ar = B0 40 (2). (7.59)
a 2mr 2 a
The flux threading the circuit of N turns is N times as great:
N%ih (b
o=10" "y (7) . (7.60)
2 a
Hence the induced electromotive force £ is
do N2h (b dI
g=-_C R (2)E (7.61)
dt 2 a) dt
Thus the self-inductance of this coil is given by
N’h (b
L= Ry, (7> (1.62)
27 a

Since g =4m - 107 kgm/ C2, we can rewrite this in a form similar to Eq. (7.44):
b

L=2-10""kgm/C*HN?h In <7> . (7.63)
a

The numerical value of this expression gives L in henrys. In Gaussian units, you
can show that the self-inductance is

2N2h b
L="—"—In(-). (7.64)
C a

You may think that one of the rings we considered earlier would have
made a simpler example to illustrate the calculation of self-inductance.
However, if we try to calculate the inductance of a simple circular loop of
wire, we encounter a puzzling difficulty. It seems a good idea to simplify
the problem by assuming that the wire has zero diameter. But we soon
discover that, if finite current flows in a filament of zero diameter, the flux
threading a loop made of such a filament is infinite! The reason is that the
field B, in the neighborhood of a filamentary current, varies as 1/r, where
r is the distance from the filament, and the integral of B x (area) diverges
as f (dr/r) when we extend it down to r = 0. To avoid this we may let
the radius of the wire be finite, not zero, which is more realistic anyway.
This may make the calculation a bit more complicated, in a given case,
but that won’t worry us. The real difficulty is that different parts of the
wire (at different distances from the center of the loop) now appear as
different circuits, linked by different amounts of flux. We are no longer
sure what we mean by the flux through the circuit. In fact, because the
electromotive force is different in the different filamentary loops into
which the circuit can be divided, some redistribution of current density
must occur when rapidly changing currents flow in the ring. Hence the
inductance of the circuit may depend somewhat on the rapidity of change
of 1, and thus not be strictly a constant as Eq. (7.58) would imply.
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(b) =
A
‘ 1
+
-_ B
C
Figure 7.23.

A simple circuit with inductance (a) and
resistance (b).

We avoided this embarrassment in the toroidal coil example by
ignoring the field in the immediate vicinity of the individual turns of the
winding. Most of the flux does not pass through the wires themselves,
and whenever that is the case the effect we have just been worrying about
will be unimportant.

7.9 Circuit containing self-inductance

Suppose we connect a battery, providing electromotive force &y, to a coil,
or inductor, with self-inductance L, as in Fig. 7.23(a). The coil itself,
the connecting wires, and even the battery will have some resistance.
We don’t care how this is distributed around the circuit. It can all be
lumped together in one resistance R, indicated on the circuit diagram
of Fig. 7.23(b) by a resistor symbol with this value. Also, the rest of
the circuit, especially the connecting wires, contribute a bit to the self-
inductance of the whole circuit; we assume that this is included in L. In
other words, Fig. 7.23(b) represents an idealization of the physical cir-
cuit. The inductor L, symbolized by ~29%-, has no resistance; the resis-
tor R has no inductance. It is this idealized circuit that we shall now
analyze.

If the current 7 in the circuit is changing at the rate dI/dt, an electro-
motive force L dI/dt will be induced, in a direction to oppose the change.
Also, there is the constant electromotive force & of the battery. If we
define the positive current direction as the one in which the battery tends
to drive current around the circuit, then the net electromotive force at any
instant is &y — LdI/dt. This drives the current / through the resistor R.
That is,

di

&o Ldt =RI. (7.65)
We can also describe the situation in this way: the voltage difference
between points A and B in Fig. 7.23(b), which we call the voltage across
the inductor, is LdI/dt, with the upper end of the inductor positive if
I in the direction shown is increasing. The voltage difference between
B and C, the voltage across the resistor, is RI, with the upper end of
the resistor positive. Hence the sum of the voltage across the inductor
and the voltage across the resistor is Ldl/dt + RI. This is the same as
the potential difference between the battery terminals, which is & (our

idealized battery has no internal resistance). Thus we have

dl
& =L— +RI, 7.66
0 o + (7.66)

which is merely a restatement of Eq. (7.65).

Before we look at the mathematical solution of Eq. (7.65), let’s pre-
dict what ought to happen in this circuit if the switch is closed at r=0.
Before the switch is closed, /=0, necessarily. A long time after the
switch has been closed, some steady state will have been attained, with
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current practically constant at some value [y. Then and thereafter,
dl/dt =~ 0, and Eq. (7.65) reduces to

& = Rly. (7.67)

The transition from zero current to the steady-state current Iy cannot
occur abruptly at t = 0, for then dI/dt would be infinite. In fact, just
after + = 0, the current I will be so small that the R/ term in Eq. (7.65)
can be ignored, giving

ﬂ = @. (7.68)
dt L
The inductance L limits the rate of rise of the current.

What we now know is summarized in Fig. 7.24(a). It only remains to
find how the whole change takes place. Equation (7.65) is a differential
equation very much like Eq. (4.39) in Chapter 4. The constant & term
complicates things slightly, but the equation is still straightforward to
solve. In Problem 7.14 you can show that the solution to Eq. (7.65) that
satisfies our initial condition, / = 0 atr = 0, is

1) = %(1 - e—(R/”’). (7.69)

The graph in Fig. 7.24(b) shows the current approaching its asymp-
totic value Iy exponentially. The “time constant” of this circuit is the
quantity L/R. If L is measured in henrys and R in ohms, this comes out in
seconds, since henrys = volt - amp~! - second, and ohms = volt - amp~".

What happens if we open the switch after the current Ip has been
established, thus forcing the current to drop abruptly to zero? That would
make the term L dI/dt negatively infinite! The catastrophe can be more
than mathematical. People have been killed opening switches in highly
inductive circuits. What happens generally is that a very high induced
voltage causes a spark or arc across the open switch contacts, so that the
current continues after all. Let us instead remove the battery from the
circuit by closing a conducting path across the LR combination, as in
Fig. 7.25(a), at the same time disconnecting the battery. We now have a
circuit described by the equation

0=19 4 pr (7.70)
T T dr ’ ’

with the initial condition / = I at t = t{, where ¢ is the instant at which
the short circuit was closed. The solution is the simple exponential decay
function

I(f) = Iye~ ®/DE=1) (7.71)

with the same characteristic time L/R as before.

367
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Figure 7.24.

(a) How the current must behave initially, and
after a very long time has elapsed. (b) The
complete variation of current with time in the
circuit of Fig. 7.23.
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Figure 7.25.
(a) LR circuit. (b) Exponential decay of current in
the LR circuit.
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710 Energy stored in the magnetic field

During the decay of the current described by Eq. (7.71) and Fig. 7.25(b),
energy is dissipated in the resistor R. Since the energy dU dissipated in
any short interval dr is RI? dt, the total energy dissipated after the closing
of the switch at time #; is given by

oo 00
U=f RI? dt:/ nge—OR/L)(t—n)dt
3 I3}

oo
= —RI} (%) e~ CR/DG=) | — %ug. (7.72)

I

The source of this energy was the inductor with its magnetic field.
Indeed, exactly that amount of work had been done by the battery to build
up the current in the first place — over and above the energy dissipated
in the resistor between ¢t = 0 and ¢t = t;, which was also provided by
the battery. To see that this is a general relation, note that, if we have an
increasing current in an inductor, work must be done to drive the current
I against the induced electromotive force L dI /dt. Since the electromotive
force is defined to be the work done per unit charge, and since a charge
I dt moves through the inductor in time dt, the work done in time dt is

dl 1,
dW = L= (Idi) = L1 dI = ZLd(P). (7.73)

Therefore, we may assign a total energy

1 2
U= L (7.74)

to an inductor carrying current /. With the eventual decay of this current,
that amount of energy will appear somewhere else.

It is natural to regard this as energy stored in the magnetic field of the
inductor, just as we have described the energy of a charged capacitor as
stored in its electric field. The energy of a capacitor charged to potential
difference V is (1/2)CV? and is accounted for by assigning to an element
of volume dv, where the electric field strength is E, an amount of energy
(€0/2)E? dv. Tt is pleasant, but hardly surprising, to find that a similar
relation holds for the energy stored in an inductor. That is, we can ascribe
to the magnetic field an energy density (1/210)B%, and summing the
energy of the whole field will give the energy (1/2)LI>.

Example (Rectangular toroidal coil) To show how the energy density
B2 /2119 works out in one case, we can go back to the toroidal coil whose induc-
tance L we calculated in Section 7.8. We found in Eq. (7.62) that

N2h b
L=H <7> . (7.75)
2 a
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The magnetic field strength B, with current / flowing, was given by 2b
poNI
B= T (7.76) 2
dr
To calculate the volume integral of B2 /240 we can use a volume element con- I
sisting of the cylindrical shell sketched in Fig. 7.26, with volume 2w rh dr. As this / pm————E
shell expands from r = a to r = b, it sweeps through all the space that contains [ e .
magnetic field. (The field B is zero everywhere outside the torus, remember.) So, \\L’\v /
| —————— ]
h

woN2hI? (b
B
JT

1 1 [P (N2
—/Bzdv= — [ (B 2xmmar = 2). am
) 210 Ja 2rr a
Comparing this result with Eq. (7.75), we see that, indeed,
1 1
— | B*av= LI
20 2

The task of Problem 7.18 is to show that this result holds for an arbitrary circuit
with inductance L.

(7.78)

The more general statement, the counterpart of our statement for the
electric field in Eq. (1.53), is that the energy U to be associated with any
magnetic field B(x, y, z) is given by

1

2 entire
1o Jeed

U B dv (7.79)

With B in tesla and v in m3, the energy U will be given in joules, as
you can check. In Eq. (7.74), with L in henrys and / in amperes, U will
also be given in joules. The Gaussian equivalent of Eq. (7.79) for U in
ergs, B in gauss, and v in cm? is

1

U=—

= B dv.
8

entire
field

(7.80)

The Gaussian equivalent of Eq. (7.74) remains U = LI?/2, because the
reasoning leading up to that equation is unchanged.

“
O

V4
4
17/

—
-

Figure 7.26.

Calculation of energy stored in the magnetic

field of the toroidal coil of Fig. 7.22.
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7.2.3 ® Inductance

Suppose you have two loops of wire, at rest (Fig. 7.30). If you run a steady current
I, around loop 1, it produces a magnetic field B;. Some of the field lines pass

16This paradox was suggested by Tom Colbert. Refer to Problem 2.55.
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B,
_—Loop2 dl,
Loop 2
B, B,
2
_—Loop 1 Loop 1
I, K‘ dl,
FIGURE 7.30 FIGURE 7.31

through loop 2; let @, be the flux of B through 2. You might have a tough time
actually calculating By, but a glance at the Biot-Savart law,

Mo dllxi
B = —1 ,
! 4711% 22

reveals one significant fact about this field: It is proportional to the current I;.
Therefore, so too is the flux through loop 2:

b, = fB] . daz.
Thus
&y = My I, (7.22)

where M>; is the constant of proportionality; it is known as the mutual induc-
tance of the two loops.

There is a cute formula for the mutual inductance, which you can derive by
expressing the flux in terms of the vector potential, and invoking Stokes’ theorem:

¢2=/B1-d32=/(VxA1)~da2=¢A1~dlz.

Now, according to Eq. 5.66,

I dl
A = Holl ah 7
4 2
and hence
1 dl
(%) o
47 2
Evidently

dl, - dl
My, = ﬂf?{ e (7.23)

4 2
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This is the Neumann formula; it involves a double line integral—one integration
around loop 1, the other around loop 2 (Fig. 7.31). It’s not very useful for practical
calculations, but it does reveal two important things about mutual inductance:

1. My, is a purely geometrical quantity, having to do with the sizes, shapes,
and relative positions of the two loops.

2. The integral in Eq. 7.23 is unchanged if we switch the roles of loops 1 and
2; it follows that

My = M. (7.24)

This is an astonishing conclusion: Whatever the shapes and positions of the
loops, the flux through 2 when we run a current I around 1 is identical to
the flux through 1 when we send the same current I around 2. We may as
well drop the subscripts and call them both M.

Example 7.10. A short solenoid (length / and radius a, with n; turns per unit
length) lies on the axis of a very long solenoid (radius b, n, turns per unit length)
as shown in Fig. 7.32. Current I flows in the short solenoid. What is the flux
through the long solenoid?

) | | i) ) ] )

b

[

FIGURE 7.32

Solution

Since the inner solenoid is short, it has a very complicated field; moreover, it puts
a different flux through each turn of the outer solenoid. It would be a miserable
task to compute the total flux this way. However, if we exploit the equality of the
mutual inductances, the problem becomes very easy. Just look at the reverse situ-
ation: run the current / through the outer solenoid, and calculate the flux through
the inner one. The field inside the long solenoid is constant:

B = uonol
(Eq. 5.59), so the flux through a single loop of the short solenoid is
Bra® = ,uonzlnaz.
There are n;/ turns in all, so the total flux through the inner solenoid is

o= uonaznlnzll.
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This is also the flux a current [ in the short solenoid would put through the long
one, which is what we set out to find. Incidentally, the mutual inductance, in this
case, is

M = uonaznlnzl.

Suppose, now, that you vary the current in loop 1. The flux through loop 2 will
vary accordingly, and Faraday’s law says this changing flux will induce an emf in
loop 2:

dd, dl,
& = yrale M T (7.25)
(In quoting Eq. 7.22—which was based on the Biot-Savart law—I am tacitly
assuming that the currents change slowly enough for the system to be consid-
ered quasistatic.) What a remarkable thing: Every time you change the current
in loop 1, an induced current flows in loop 2—even though there are no wires
connecting them!
Come to think of it, a changing current not only induces an emf in any nearby
loops, it also induces an emf in the source loop itself (Fig 7.33). Once again, the
field (and therefore also the flux) is proportional to the current:

®=LI. (7.26)

The constant of proportionality L is called the self inductance (or simply the
inductance) of the loop. As with M, it depends on the geometry (size and shape)
of the loop. If the current changes, the emf induced in the loop is

dl
E=—-L—. 7.27
T (7.27)

Inductance is measured in henries (H); a henry is a volt-second per ampere.

FIGURE 7.33
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Example 7.11. Find the self-inductance of a toroidal coil with rectangular cross
section (inner radius a, outer radius b, height /), that carries a total of N turns.

Solution
The magnetic field inside the toroid is (Eq. 5.60)

_ oNI
T 27s
a -
S > h
b -
ds
Axis
FIGURE 7.34

The flux through a single turn (Fig. 7.34) is

I (b1 Ih b
fB.dazl“’N h/ Lag = NI (2
2 « S 27 a

The total flux is N times this, so the self-inductance (Eq. 7.26) is

N?h b
L=r" (-) . (7.28)
2 a

Inductance (like capacitance) is an intrinsically positive quantity. Lenz’s law,
which is enforced by the minus sign in Eq. 7.27, dictates that the emf is in such
a direction as to oppose any change in current. For this reason, it is called a
back emf. Whenever you try to alter the current in a wire, you must fight against
this back emf. Inductance plays somewhat the same role in electric circuits that
mass plays in mechanical systems: The greater L is, the harder it is to change
the current, just as the larger the mass, the harder it is to change an object’s
velocity.

Example 7.12. Suppose a current / is flowing around a loop, when someone
suddenly cuts the wire. The current drops “instantaneously” to zero. This gen-
erates a whopping back emf, for although / may be small, d//dt is enormous.
(That’s why you sometimes draw a spark when you unplug an iron or toaster—
electromagnetic induction is desperately trying to keep the current going, even if
it has to jump the gap in the circuit.)

Nothing so dramatic occurs when you plug in a toaster or iron. In this case in-
duction opposes the sudden increase in current, prescribing instead a smooth and
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continuous buildup. Suppose, for instance, that a battery (which supplies a con-
stant emf &) is connected to a circuit of resistance R and inductance L (Fig. 7.35).
What current flows?

FIGURE 7.35

Solution
The total emf in this circuit is & from the battery plus —L(d1/dt) from the in-
ductance. Ohm’s law, then, says!’

& — L— = IR.
0 dt

This is a first-order differential equation for / as a function of time. The general
solution, as you can show for yourself, is

&
(1) = EO + ke~ R/

where k is a constant to be determined by the initial conditions. In particular, if
you close the switch at time r = 0, so 1(0) = 0, then k = —&)/R, and

1(t) = % [1—e /D], (7.29)

This function is plotted in Fig. 7.36. Had there been no inductance in the circuit,
the current would have jumped immediately to & /R. In practice, every circuit
has some self-inductance, and the current approaches &/R asymptotically. The
quantity T = L/R is the time constant; it tells you how long the current takes to
reach a substantial fraction (roughly two-thirds) of its final value.

EJR

LI/R 2L/R 3L/IR !

FIGURE 7.36

1"Notice that —L(dI/dt) goes on the left side of the equation—it is part of the emf that establishes
the voltage across the resistor.
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Problem 7.22 A small loop of wire (radius a) is held a distance z above the center
of a large loop (radius b), as shown in Fig. 7.37. The planes of the two loops are
parallel, and perpendicular to the common axis.

(a) Suppose current / flows in the big loop. Find the flux through the little loop.
(The little loop is so small that you may consider the field of the big loop to be
essentially constant.)

(b) Suppose current / flows in the little loop. Find the flux through the big loop.
(The little loop is so small that you may treat it as a magnetic dipole.)

(c) Find the mutual inductances, and confirm that M, = Mj;.

Problem 7.23 A square loop of wire, of side a, lies midway between two long wires,
3a apart, and in the same plane. (Actually, the long wires are sides of a large rectan-
gular loop, but the short ends are so far away that they can be neglected.) A clock-
wise current / in the square loop is gradually increasing: dI/dt = k (a constant).
Find the emf induced in the big loop. Which way will the induced current flow?

Problem 7.24 Find the self-inductance per unit length of a long solenoid, of radius
R, carrying n turns per unit length.

a

z C aq_ )

l

FIGURE 7.37 FIGURE 7.38

Problem 7.25 Try to compute the self-inductance of the “hairpin” loop shown in
Fig. 7.38. (Neglect the contribution from the ends; most of the flux comes from
the long straight section.) You’ll run into a snag that is characteristic of many self-
inductance calculations. To get a definite answer, assume the wire has a tiny radius €,
and ignore any flux through the wire itself.

Problem 7.26 An alternating current / (1) = I, cos(wt) (amplitude 0.5 A, frequency
60 Hz) flows down a straight wire, which runs along the axis of a toroidal coil with
rectangular cross section (inner radius 1 cm, outer radius 2 cm, height 1 cm, 1000
turns). The coil is connected to a 500 €2 resistor.

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the
current, Iz (¢), in the resistor.

(b) Calculate the back emf in the coil, due to the current /(7). What is the ratio of
the amplitudes of this back emf and the “direct” emf in (a)?

Problem 7.27 A capacitor C is charged up to a voltage V and connected to an
inductor L, as shown schematically in Fig. 7.39. At time ¢t = 0, the switch S is
closed. Find the current in the circuit as a function of time. How does your answer
change if a resistor R is included in series with C and L?
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FIGURE 7.39

7.2.4 M Energy in Magnetic Fields

It takes a certain amount of energy to start a current flowing in a circuit. I’'m not
talking about the energy delivered to the resistors and converted into heat—that
is irretrievably lost, as far as the circuit is concerned, and can be large or small,
depending on how long you let the current run. What I am concerned with, rather,
is the work you must do against the back emf to get the current going. This is
a fixed amount, and it is recoverable: you get it back when the current is turned
off. In the meantime, it represents energy latent in the circuit; as we’ll see in a
moment, it can be regarded as energy stored in the magnetic field.

The work done on a unit charge, against the back emf, in one trip around the
circuit is —& (the minus sign records the fact that this is the work done by you
against the emf, not the work done by the emf). The amount of charge per unit
time passing down the wire is /. So the total work done per unit time is

aw dl

—=—-EI =LI—.

dt dt
If we start with zero current and build it up to a final value /, the work done
(integrating the last equation over time) is

1
W= 5L12. (7.30)

It does not depend on how long we take to crank up the current, only on the
geometry of the loop (in the form of L) and the final current /.

There is a nicer way to write W, which has the advantage that it is readily
generalized to surface and volume currents. Remember that the flux & through
the loop is equal to L1 (Eq. 7.26). On the other hand,

d):fB-da:/(VxA)-da:?gA-dl,

where the line integral is around the perimeter of the loop. Thus

LI:%A~dl,
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and therefore
1 1
WZEI A-dl:i (A-Ddl. (7.31)
In this form, the generalization to volume currents is obvious:

W= l/(A'J)d‘t. (7.32)
2y

But we can do even better, and express W entirely in terms of the magnetic
field: Ampere’s law, V x B = uoJ, lets us eliminate J:

1
W=— 1A -(VxB)dr. (7.33)
2u0
Integration by parts transfers the derivative from B to A; specifically, product rule
6 states that

V. AxB)=B-(VxA)—A-(VxB),
SO
A-(VxB)=B-B—V. (A xB).

WzL[/Bzdr—/V.(AxB)dr}
210

=L|:/ Bzdt—?g(AxB)-da], (7.34)
2uo LSy s

where S is the surface bounding the volume V.

Now, the integration in Eq. 7.32 is to be taken over the entire volume occupied
by the current. But any region larger than this will do just as well, for J is zero
out there anyway. In Eq. 7.34, the larger the region we pick the greater is the
contribution from the volume integral, and therefore the smaller is that of the
surface integral (this makes sense: as the surface gets farther from the current,
both A and B decrease). In particular, if we agree to integrate over all space, then
the surface integral goes to zero, and we are left with

Consequently,

1
=— B*dr. (7.35)
ZMO all space

In view of this result, we say the energy is “stored in the magnetic field,” in
the amount (B?/210) per unit volume. This is a nice way to think of it, though
someone looking at Eq. 7.32 might prefer to say that the energy is stored in the
current distribution, in the amount %(A - J) per unit volume. The distinction is
one of bookkeeping; the important quantity is the total energy W, and we need
not worry about where (if anywhere) the energy is “located.”
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You might find it strange that it takes energy to set up a magnetic field—after
all, magnetic fields themselves do no work. The point is that producing a magnetic
field, where previously there was none, requires changing the field, and a chang-
ing B-field, according to Faraday, induces an electric field. The latter, of course,
can do work. In the beginning, there is no E, and at the end there is no E; but in
between, while B is building up, there is an E, and it is against this that the work
is done. (You see why I could not calculate the energy stored in a magnetostatic
field back in Chapter 5.) In the light of this, it is extraordinary how similar the
magnetic energy formulas are to their electrostatic counterparts: '8

1
Wetee = / (Vp)dr = %0 / E2dx, (2.43 and 2.45)

1 1
Winag = 5 / A-Jdr = e / B*dr. (7.32 and 7.35)

Example 7.13. A long coaxial cable carries current / (the current flows down the
surface of the inner cylinder, radius a, and back along the outer cylinder, radius
b) as shown in Fig. 7.40. Find the magnetic energy stored in a section of length /.

-/
1 —>

al

FIGURE 7.40

Solution
According to Ampere’s law, the field between the cylinders is

ol »
B=—¢.
27rs¢

Elsewhere, the field is zero. Thus, the energy per unit volume is
1 (ol \ _ pol?
2uo \27s ) 8m2s2
The energy in a cylindrical shell of length /, radius s, and thickness ds, then, is

I? I’ (d
Ho 2rlsds = Ho @ .
8m2s2 47 s

8For an illuminating confirmation of Eq. 7.35, using the method of Prob. 2.44, see T. H. Boyer,
Am. J. Phys. 69, 1 (2001).
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Integrating from a to b, we have:

1% b
w=""""n (-) .
4 a

By the way, this suggests a very simple way to calculate the self-inductance of
the cable. According to Eq. 7.30, the energy can also be written as %Ll 2. Com-

paring the two expressions, "’
1 b
L= Kot In (—) .
2w a

This method of calculating self-inductance is especially useful when the current
is not confined to a single path, but spreads over some surface or volume, so that
different parts of the current enclose different amounts of flux. In such cases, it
can be very tricky to get the inductance directly from Eq. 7.26, and it is best to let
Eq. 7.30 define L.

Problem 7.28 Find the energy stored in a section of length / of a long solenoid
(radius R, current /, n turns per unit length), (a) using Eq. 7.30 (you found L in
Prob. 7.24); (b) using Eq. 7.31 (we worked out A in Ex. 5.12); (c¢) using Eq. 7.35;
(d) using Eq. 7.34 (take as your volume the cylindrical tube from radius a < R out
toradius b > R).

Problem 7.29 Calculate the energy stored in the toroidal coil of Ex. 7.11, by apply-
ing Eq. 7.35. Use the answer to check Eq. 7.28.

Problem 7.30 A long cable carries current in one direction uniformly distributed
over its (circular) cross section. The current returns along the surface (there is a
very thin insulating sheath separating the currents). Find the self-inductance per
unit length.

Problem 7.31 Suppose the circuit in Fig. 7.41 has been connected for a long time
when suddenly, at time r = 0, switch S is thrown from A to B, bypassing the battery.

Ao, S
B
€ =+ L
R
FIGURE 7.41

1Notice the similarity to Eq. 7.28—in a sense, the rectangular toroid is a short coaxial cable, turned
on its side.
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(a) What is the current at any subsequent time 7?
(b) What is the total energy delivered to the resistor?
(c) Show that this is equal to the energy originally stored in the inductor.

Problem 7.32 Two tiny wire loops, with areas a, and a,, are situated a displacement
% apart (Fig. 7.42).

FIGURE 7.42

(a) Find their mutual inductance. [Hint: Treat them as magnetic dipoles, and use
Eq. 5.88.] Is your formula consistent with Eq. 7.24?

(b) Suppose a current /; is flowing in loop 1, and we propose to turn on a current
I, in loop 2. How much work must be done, against the mutually induced emf,
to keep the current /; flowing in loop 1? In light of this result, comment on
Eq. 6.35.

Problem 7.33 An infinite cylinder of radius R carries a uniform surface charge o.
We propose to set it spinning about its axis, at a final angular velocity w ;. How much
work will this take, per unit length? Do it two ways, and compare your answers:

(a) Find the magnetic field and the induced electric field (in the quasistatic approx-
imation), inside and outside the cylinder, in terms of w, @, and s (the distance
from the axis). Calculate the torque you must exert, and from that obtain the
work done per unit length (W = [ N d¢).

(b) Use Eq. 7.35 to determine the energy stored in the resulting magnetic field.
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